Domino Data Lab vs Cloudera CDH

Struggling to choose between Domino Data Lab and Cloudera CDH? Both products offer unique advantages, making it a tough decision.

Domino Data Lab is a Ai Tools & Services solution with tags like data-science, machine-learning, model-management, collaboration.

It boasts features such as Centralized model building workspace, Integrated tools for data access, model training, deployment and monitoring, Collaboration features like workspaces, permissions and version control, MLOps capabilities like CI/CD pipelines and model monitoring, Security and governance features and pros including Improves efficiency and collaboration for data science teams, Enables rapid experimentation and deployment of models, Provides end-to-end MLOps capabilities, Built-in security and governance controls.

On the other hand, Cloudera CDH is a Ai Tools & Services product tagged with hadoop, hdfs, yarn, spark, hive, hbase, impala, kudu.

Its standout features include HDFS - Distributed and scalable file system, YARN - Cluster resource management, MapReduce - Distributed data processing, Hive - SQL interface for querying data, HBase - Distributed column-oriented database, Impala - Massively parallel SQL query engine, Spark - In-memory cluster computing framework, Kudu - Fast analytics on fast data, Cloudera Manager - Centralized management and monitoring, and it shines with pros like Open source and free to use, Includes many popular Hadoop ecosystem projects, Centralized management and monitoring, Pre-configured and tested combinations of components, Active development and support from Cloudera.

To help you make an informed decision, we've compiled a comprehensive comparison of these two products, delving into their features, pros, cons, pricing, and more. Get ready to explore the nuances that set them apart and determine which one is the perfect fit for your requirements.

Domino Data Lab

Domino Data Lab

Domino Data Lab is a collaborative data science platform that enables data science teams to develop, deploy, and monitor analytical models in a centralized workspace. It offers tools for model building, deployment, monitoring, and more with integrated security and governance features.

Categories:
data-science machine-learning model-management collaboration

Domino Data Lab Features

  1. Centralized model building workspace
  2. Integrated tools for data access, model training, deployment and monitoring
  3. Collaboration features like workspaces, permissions and version control
  4. MLOps capabilities like CI/CD pipelines and model monitoring
  5. Security and governance features

Pricing

  • Subscription-Based

Pros

Improves efficiency and collaboration for data science teams

Enables rapid experimentation and deployment of models

Provides end-to-end MLOps capabilities

Built-in security and governance controls

Cons

Can be complex to set up and manage

Requires change in processes for some data science teams

Limited customizability compared to open source options


Cloudera CDH

Cloudera CDH

Cloudera CDH (Cloudera Distribution Including Apache Hadoop) is an open source data platform that combines Hadoop ecosystem components like HDFS, YARN, Spark, Hive, HBase, Impala, Kudu, and more into a single managed platform.

Categories:
hadoop hdfs yarn spark hive hbase impala kudu

Cloudera CDH Features

  1. HDFS - Distributed and scalable file system
  2. YARN - Cluster resource management
  3. MapReduce - Distributed data processing
  4. Hive - SQL interface for querying data
  5. HBase - Distributed column-oriented database
  6. Impala - Massively parallel SQL query engine
  7. Spark - In-memory cluster computing framework
  8. Kudu - Fast analytics on fast data
  9. Cloudera Manager - Centralized management and monitoring

Pricing

  • Open Source
  • Subscription-Based (Cloudera Enterprise)

Pros

Open source and free to use

Includes many popular Hadoop ecosystem projects

Centralized management and monitoring

Pre-configured and tested combinations of components

Active development and support from Cloudera

Cons

Can be complex to configure and manage

Requires dedicated hardware/cluster

Steep learning curve for Hadoop and related technologies

Not as flexible as rolling your own Hadoop distribution