Matplotlib vs Bokeh

Professional comparison and analysis to help you choose the right software solution for your needs. Compare features, pricing, pros & cons, and make an informed decision.

Matplotlib icon
Matplotlib
Bokeh icon
Bokeh

Expert Analysis & Comparison

Struggling to choose between Matplotlib and Bokeh? Both products offer unique advantages, making it a tough decision.

Matplotlib is a Photos & Graphics solution with tags like plotting, graphs, charts, visualization, python.

It boasts features such as 2D plotting, Publication quality output, Support for many plot types (line, bar, scatter, histogram etc), Extensive customization options, IPython/Jupyter notebook integration, Animations and interactivity, LaTeX support for mathematical typesetting and pros including Mature and feature-rich, Large user community and extensive documentation, Highly customizable, Integrates well with NumPy, Pandas and SciPy, Output can be saved to many file formats.

On the other hand, Bokeh is a Development product tagged with python, data-visualization, interactive, graphics, web-browser.

Its standout features include Interactive data visualization, Supports streaming data, Python library, Targets modern web browsers, Elegant and concise graphics, High-performance interactivity, Can handle large datasets, and it shines with pros like Very flexible and customizable visualizations, Integrates well with other Python data tools like NumPy and Pandas, Open source and free, Good performance even with large datasets, Nice web-based interface for sharing visualizations.

To help you make an informed decision, we've compiled a comprehensive comparison of these two products, delving into their features, pros, cons, pricing, and more. Get ready to explore the nuances that set them apart and determine which one is the perfect fit for your requirements.

Why Compare Matplotlib and Bokeh?

When evaluating Matplotlib versus Bokeh, both solutions serve different needs within the photos & graphics ecosystem. This comparison helps determine which solution aligns with your specific requirements and technical approach.

Market Position & Industry Recognition

Matplotlib and Bokeh have established themselves in the photos & graphics market. Key areas include plotting, graphs, charts.

Technical Architecture & Implementation

The architectural differences between Matplotlib and Bokeh significantly impact implementation and maintenance approaches. Related technologies include plotting, graphs, charts, visualization.

Integration & Ecosystem

Both solutions integrate with various tools and platforms. Common integration points include plotting, graphs and python, data-visualization.

Decision Framework

Consider your technical requirements, team expertise, and integration needs when choosing between Matplotlib and Bokeh. You might also explore plotting, graphs, charts for alternative approaches.

Feature Matplotlib Bokeh
Overall Score N/A N/A
Primary Category Photos & Graphics Development
Target Users Developers, QA Engineers QA Teams, Non-technical Users
Deployment Self-hosted, Cloud Cloud-based, SaaS
Learning Curve Moderate to Steep Easy to Moderate

Product Overview

Matplotlib
Matplotlib

Description: Matplotlib is a comprehensive 2D plotting library for Python that allows users to create a wide variety of publication-quality graphs, charts, and visualizations. It integrates well with NumPy and Pandas data structures.

Type: Open Source Test Automation Framework

Founded: 2011

Primary Use: Mobile app testing automation

Supported Platforms: iOS, Android, Windows

Bokeh
Bokeh

Description: Bokeh is an interactive data visualization library for Python that targets modern web browsers for presentation. It offers elegant, concise construction of versatile graphics, and affords high-performance interactivity over large or streaming datasets.

Type: Cloud-based Test Automation Platform

Founded: 2015

Primary Use: Web, mobile, and API testing

Supported Platforms: Web, iOS, Android, API

Key Features Comparison

Matplotlib
Matplotlib Features
  • 2D plotting
  • Publication quality output
  • Support for many plot types (line, bar, scatter, histogram etc)
  • Extensive customization options
  • IPython/Jupyter notebook integration
  • Animations and interactivity
  • LaTeX support for mathematical typesetting
Bokeh
Bokeh Features
  • Interactive data visualization
  • Supports streaming data
  • Python library
  • Targets modern web browsers
  • Elegant and concise graphics
  • High-performance interactivity
  • Can handle large datasets

Pros & Cons Analysis

Matplotlib
Matplotlib
Pros
  • Mature and feature-rich
  • Large user community and extensive documentation
  • Highly customizable
  • Integrates well with NumPy, Pandas and SciPy
  • Output can be saved to many file formats
Cons
  • Steep learning curve
  • Plotting code can be verbose
  • 3D plotting support is limited
  • Cannot do web visualization (unlike Bokeh or Plotly)
Bokeh
Bokeh
Pros
  • Very flexible and customizable visualizations
  • Integrates well with other Python data tools like NumPy and Pandas
  • Open source and free
  • Good performance even with large datasets
  • Nice web-based interface for sharing visualizations
Cons
  • Steeper learning curve than some visualization libraries
  • Visualizations can be more complex to build
  • Limited built-in statistical analysis features
  • Requires knowledge of Python and web development
  • Not as simple as drag-and-drop visualization builders

Pricing Comparison

Matplotlib
Matplotlib
  • Open Source
Bokeh
Bokeh
  • Open Source

Get More Information

Ready to Make Your Decision?

Explore more software comparisons and find the perfect solution for your needs